早教吧作业答案频道 -->其他-->
在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,△FMH是等腰直角三角形吗
题目详情
在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.
(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,△FMH是等腰直角三角形吗?请说明理由;
(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,△FMH是等腰直角三角形吗?请说明理由;
(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)
(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,△FMH是等腰直角三角形吗?请说明理由;
(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,△FMH是等腰直角三角形吗?请说明理由;
(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)
▼优质解答
答案和解析
(1)△FMH是等腰直角三角形.
∵四边形BCGF和CDHN都是正方形,点N与点G重合,点M与点C重合,
∴FB=BM=MD=DH,∠FBM=∠MDH=90°,
在△FBM和△MDH中,
,
∴△FBM≌△MDH(SAS),
∴FM=MH,
∵∠FMB=∠DMH=45°,
∴∠FMH=90°,
∴FM⊥HM,
∴△FMH是等腰直角三角形;
(2)△FMH是等腰直角三角形,
连接MB、MD,如图2,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
,
∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形;
(3)△FMH是等腰直角三角形.
连接MB、MD,如图3,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
,
∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形.
∵四边形BCGF和CDHN都是正方形,点N与点G重合,点M与点C重合,
∴FB=BM=MD=DH,∠FBM=∠MDH=90°,
在△FBM和△MDH中,
|
∴△FBM≌△MDH(SAS),
∴FM=MH,
∵∠FMB=∠DMH=45°,
∴∠FMH=90°,
∴FM⊥HM,
∴△FMH是等腰直角三角形;
(2)△FMH是等腰直角三角形,
连接MB、MD,如图2,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
|
∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形;
(3)△FMH是等腰直角三角形.
连接MB、MD,如图3,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
|
∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形.
看了在图1至图3中,点B是线段AC...的网友还看了以下:
急1.求使函数f(x)=100|(x-1)(x-2)|-kx有四个不同零点的最大正整数k2.设函数 2020-05-14 …
如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,角ABD=20°,角 2020-05-16 …
已知在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点,求证:MN与 2020-05-22 …
如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两 2020-06-12 …
概率论,n选m(n>m)问题!假如A去选B.A有n个B有m个,其中n>m,我想问B中所有值都有至少 2020-06-13 …
如图,在正点电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点, 2020-07-22 …
用反证法证明真命题“四边形中至少有一个角是钝角或直角”时,应假设()A.四边形中至多有一个角是钝角 2020-08-01 …
在平面直角坐标系中有点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第三象限内 2020-08-03 …
"四"在中国有什么特殊意义?为什么从古至今文人雅士,或诗人学者大多都是以四个为单位而被齐名?如"初唐 2020-12-06 …
在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE 2020-12-25 …