早教吧作业答案频道 -->数学-->
若函数f(x)=|4x-x2|+a有4个零点,求a的取值范围
题目详情
若函数f(x)=|4x-x2|+a有4个零点,求a的取值范围
▼优质解答
答案和解析
本题应用图象法,先将原问题转化为方程|4x-x2|=-a有4个根的问题,作出g(x)=|4x-x2|的图象,结合图象分析得0<-a<4,从而原问题得解.
分析:本题考察的是数形结合法,先将原问题转化为方程|4x-x2|=-a有4个根的问题,作出g(x)=|4x-x2|的图象,结合图象分析得0<-a<4,从而原问题得解.
若f(x)=|4x-x2|+a有4个零点,即方程|4x-x2|+a=0有4个根,
即方程|4x-x2|=-a有4个根.
令g(x)=|4x-x2|,h(x)=-a,作出g(x)的图象,
由图象可知要使方程|4x-x2|=-a有4个根,则g(x)与h(x)的图象应有4个交点,
∴0<-a<4,即-4<a<0,
∴a的取值范围是(-4,0)
分析:本题考察的是数形结合法,先将原问题转化为方程|4x-x2|=-a有4个根的问题,作出g(x)=|4x-x2|的图象,结合图象分析得0<-a<4,从而原问题得解.
若f(x)=|4x-x2|+a有4个零点,即方程|4x-x2|+a=0有4个根,
即方程|4x-x2|=-a有4个根.
令g(x)=|4x-x2|,h(x)=-a,作出g(x)的图象,
由图象可知要使方程|4x-x2|=-a有4个根,则g(x)与h(x)的图象应有4个交点,
∴0<-a<4,即-4<a<0,
∴a的取值范围是(-4,0)
看了若函数f(x)=|4x-x2|...的网友还看了以下:
设f(x)在[a,b]上连续,在(a,b)内可导,且当x∈(a,b)时,f(x)≠0.若f(a)= 2020-05-14 …
若函数f(x)对于任意实数x都有f(x)=f(x-a)+f(x+a)(常数a为正整数),则f(x) 2020-05-16 …
书上有句话说1.在(a,b)内可导的函数f(x)在(a,b)上递增的充要条件是f'(x)≥0.那言 2020-06-06 …
已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤ 2020-07-14 …
设f(x)存在二阶导数,下列结论正确的是A若f(x)只有两个零点,则f'(x)必定只有一个零点B若 2020-07-30 …
若函数y=f(x)(x∈R)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)是周期函 2020-08-02 …
高三学渣悔改求学.设f(x)的定义域为D,若f(x)满足条件:存在[a,b]属于D使为什么在x=a时 2020-11-04 …
(1)若函数f(X)满足f(x+a)=f(x-a),则f(x)为周期函数,丨2a丨为它的一个周期(1 2020-11-06 …
f(x)=x^2(x-a)若f(x)在(2,3)上单调,则a的范围是若在(2,3)上不单调,则a的范 2020-11-28 …
已知f(x)=3x^2-x+2,g(x)=2x^2+x+a,若f(x)>g(x)恒成立,则a的范围是 2020-12-22 …