早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若函数f(x)=|4x-x2|+a有4个零点,求a的取值范围

题目详情
若函数f(x)=|4x-x2|+a有4个零点,求a的取值范围
▼优质解答
答案和解析
本题应用图象法,先将原问题转化为方程|4x-x2|=-a有4个根的问题,作出g(x)=|4x-x2|的图象,结合图象分析得0<-a<4,从而原问题得解.
分析:本题考察的是数形结合法,先将原问题转化为方程|4x-x2|=-a有4个根的问题,作出g(x)=|4x-x2|的图象,结合图象分析得0<-a<4,从而原问题得解.
若f(x)=|4x-x2|+a有4个零点,即方程|4x-x2|+a=0有4个根,
即方程|4x-x2|=-a有4个根.
令g(x)=|4x-x2|,h(x)=-a,作出g(x)的图象,
由图象可知要使方程|4x-x2|=-a有4个根,则g(x)与h(x)的图象应有4个交点,
∴0<-a<4,即-4<a<0,
∴a的取值范围是(-4,0)