早教吧 育儿知识 作业答案 考试题库 百科 知识分享

P为函数y=x^(1/2)图像上任意一点,设Q为圆C:(x-4)^2+(y-4)^2=1上动点,P到y轴距离为m,求m+[PQ]的最小值.

题目详情
P为函数y=x^(1/2)图像上任意一点,设Q为圆C:(x-4)^2+(y-4)^2=1上动点,P到y轴距离为m,求m+[PQ]的最小值.
▼优质解答
答案和解析
如图,设F为抛物线S:y=x^(1/2)的焦点,L为其准线,P为S上任意一点,PB为P到y轴的垂线,Q为圆C上的任意点.延长PB交L于A,连接QC.
    因为QC=1,BA=1/4都是定长,显然当且仅当CQ+QP+PA取得最小值时,m+[PQ]取得最小值.
    因为PA=PF,因此当且仅当CQ+QP+PF取得最小值时,m+PQ最小.
    连接CF交圆C于Q0,交S于P0,显然CF的长是CQ+QP+PF的最小值.
故所求m+[PQ]的最小值即为CF-1-1/4.
    易得CF=Sqrt[4²+(4-1/4)²]=(1/4)√481
∴m+[PQ]的最小值为(1/4)(√481-5)