早教吧作业答案频道 -->数学-->
在平行四边形ABCD中,AC,BD交于点O,过O点作直线EF,GH
题目详情
在平行四边形ABCD中,AC,BD交于点O,过O点作直线EF,GH
▼优质解答
答案和解析
在□ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连接EG、GF、FH、HE.
(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是?;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是?;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.
分析:(1)由于平行四边形对角线的交点是它的对称中心,即可得出OE=OF、OG=OH;根据对角线互相平分的四边形是平行四边形即可判断出EGFH的性质;
(2)当EF⊥GH时,平行四边形EGFH的对角线互相垂直平分,故四边形EGFH是菱形;
(3)当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2);
(4)当AC=BD且AC⊥BD时,四边形ABCD是正方形,则对角线相等且互相垂直平分;可通过证△BOG≌△COF,得OG=OF,从而证得菱形的对角线相等,根据对角线相等的菱形是正方形即可判断出EGFH的形状.
(1)四边形EGFH是平行四边形;
证明:∵▱ABCD的对角线AC、BD交于点O,
∴点O是▱ABCD的对称中心;
∴EO=FO,GO=HO;
∴四边形EGFH是平行四边形;
(2)菱形;
(3)菱形;
(4)四边形EGFH是正方形;
证明:∵AC=BD,∴▱ABCD是矩形;
又∵AC⊥BD,∴▱ABCD是菱形;
∴▱ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;
∵EF⊥GH,
∴∠GOF=90°;∴∠BOG=∠COF;
∴△BOG≌△COF;
∴OG=OF,∴GH=EF;
由(1)知四边形EGFH是平行四边形,又∵EF⊥GH,EF=GH;
∴四边形EGFH是正方形.
(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是?;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是?;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.
分析:(1)由于平行四边形对角线的交点是它的对称中心,即可得出OE=OF、OG=OH;根据对角线互相平分的四边形是平行四边形即可判断出EGFH的性质;
(2)当EF⊥GH时,平行四边形EGFH的对角线互相垂直平分,故四边形EGFH是菱形;
(3)当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2);
(4)当AC=BD且AC⊥BD时,四边形ABCD是正方形,则对角线相等且互相垂直平分;可通过证△BOG≌△COF,得OG=OF,从而证得菱形的对角线相等,根据对角线相等的菱形是正方形即可判断出EGFH的形状.
(1)四边形EGFH是平行四边形;
证明:∵▱ABCD的对角线AC、BD交于点O,
∴点O是▱ABCD的对称中心;
∴EO=FO,GO=HO;
∴四边形EGFH是平行四边形;
(2)菱形;
(3)菱形;
(4)四边形EGFH是正方形;
证明:∵AC=BD,∴▱ABCD是矩形;
又∵AC⊥BD,∴▱ABCD是菱形;
∴▱ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;
∵EF⊥GH,
∴∠GOF=90°;∴∠BOG=∠COF;
∴△BOG≌△COF;
∴OG=OF,∴GH=EF;
由(1)知四边形EGFH是平行四边形,又∵EF⊥GH,EF=GH;
∴四边形EGFH是正方形.
看了 在平行四边形ABCD中,AC...的网友还看了以下:
如图,已知△ABC内接于圆O,AD平分∠BAC交圆O于点D,过D作圆O的切线与AC的延长线交于点E. 2020-03-30 …
以RT△ABC的直角边AB为直径作圆O,与斜边AC交于点D,过点D作圆O的切线交BC于点E,连接O 2020-05-21 …
如图,△ABC的顶点A.B在圆O上,且AC过弧AB的中点D,过点D作圆O的切线DE交BC于点E,延 2020-06-05 …
(1/2)如图6所示,在Rt三角形ABC中,角C=90度,点D是AC的中点,且角A=角DBC,过点 2020-06-05 …
在平面直角坐标系中,梯形ABOC的顶点A(6,8)、C(10,0),AB∥OC,点P从C点出发,向 2020-06-14 …
已知正三角形ABC的三个顶点都在球心为O、半径为3的球面上,且三棱锥O-ABC的高为2,点D是线段 2020-07-20 …
如图,菱形ABCD的内切圆O与各边分别切于E,F,G,H,在弧EF与GH上分别作圆O的切线交AB于 2020-07-31 …
已知△ABC是圆O的内接三角形,∠BAC的角平分线交BC于点F交圆O于点D过点D作圆O的切线交AC 2020-08-03 …
如图,过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且A 2020-12-05 …
如图,己知O是▱ABCD内一点,过O作GH∥AB分别交CB、AD于点G、H;过点O作EF∥BC分别交 2020-12-07 …