早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系xoy中,已知抛物线的对称轴为y轴,经过(0,1),(-4,5)两点, 已知点F的坐标(0,2),设抛物线上任意一点P的横坐标为Xo,作PM垂直x轴于点m,连接pF,用含xo的式子表示出线段PM
题目详情
如图,在平面直角坐标系xoy中,已知抛物线的对称轴为y轴,经过(0,1),(-4,5)两点, 已知点F的坐标(0,2),设抛物线上任意一点P的横坐标为Xo,作PM垂直x轴于点m,连接pF,用含xo的式子表示出线段PM与线段PF,并比较线段PM与PF的大小
▼优质解答
答案和解析
1.设抛物线方程为y=ax²+c (这是对称轴在y轴的抛物线方程)
代入(0,1)(-4,5)得
1=c 5=16a+1 a=1/4
抛物线方程为y=x²/4+1
2.P点横坐标为x0,可以计算出y=x0²/4+1
M点的坐标为(x0,0)
PM=|y|=|x0²/4+1|
PF²=x0²+(x0²/4-1)²=x0²+x0^4/16-x0²/2+1=x0^4/16+x0²/2+1
PM²=x0^4/16+x0²/2+1
PF=PM
你的好评是我前进的动力.
我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!
代入(0,1)(-4,5)得
1=c 5=16a+1 a=1/4
抛物线方程为y=x²/4+1
2.P点横坐标为x0,可以计算出y=x0²/4+1
M点的坐标为(x0,0)
PM=|y|=|x0²/4+1|
PF²=x0²+(x0²/4-1)²=x0²+x0^4/16-x0²/2+1=x0^4/16+x0²/2+1
PM²=x0^4/16+x0²/2+1
PF=PM
你的好评是我前进的动力.
我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!
看了 如图,在平面直角坐标系xoy...的网友还看了以下:
抛物线一题.已知过坐标原点O且在P点的切线平行的直线交抛物线另一点于Q,证明过点P平行于x轴的直线通 2020-03-30 …
平面直角坐标系的原点为O,在抛物线y=1/2x^2上取一点P,在x轴上取一点A,使OP=PA,平面 2020-05-16 …
已知抛物线y=(x-b)2+m-b的顶点为m与轴交于点A(x1,O),B(x2,O),且△MAB为 2020-07-12 …
已知O为坐标原点,F为抛物线C:y2=4x的焦点,P为抛物线C上一点,若|PF|=4,则△POF的 2020-07-14 …
在平面直角坐标系xOy中,抛物线y=-x2+x+m2-3m+2与x轴的交点分别为原点O和点A,点B 2020-07-22 …
如图,在平面直角坐标系中,抛物线y=-x2+3x与x轴交于O、A两点,与直线y=x交于O、B两点, 2020-07-26 …
抛物线l:y=-x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(a+ 2020-07-26 …
已知点A的坐标为(0,2√3)点C的坐标为(-1,0)若坐标原点为O,P为线段OA上一动点,求CP 2020-08-02 …
如图所示,在平面直角坐标系中,抛物线的顶点M到x轴的距离是4,抛物线与x轴相交于O、P两点,OP=4 2020-12-25 …
已知抛物线C:x2=2py(p>0)的焦点为F,A,B为抛物线上异于坐标原点O的不同两点,抛物线C在 2021-01-01 …