早教吧作业答案频道 -->数学-->
函数f:R→R满足下述条件:对所有实数x,有f(x+19)≤f(x)+19 和 f(x+94)≥f(x)+94.求证:对所有实数x,f(x+1)=f(x)+1.
题目详情
函数f:R→R满足下述条件:对所有实数x,有f(x+19)≤f(x)+19 和 f(x+94)≥f(x)+94.求证:对所有实数x,f(x+1)=f(x)+1.
▼优质解答
答案和解析
一楼的反证法有漏洞.按这个证法,可以证明f(x+19·94/n)=f(x)+19·94/n对任意大的自然数n都成立,那么当n→+∞时,岂不是可以证明f(x)有无穷小的正周期,那么f(x)岂不只能是常函数了?
寂寂落定的漏洞在于:事先肯定了f(x+1)与f(x)+1有恒定方向的不等式成立.这可不一定呀.
其实,我们只能证明f(x+1)=f(x)+1,即可得到最小正周期为1.证明如下:
∵f(x+19)≤f(x)+19,∴f(x+19n)≤f(x+19(n-1))+19≤…≤f(x)+19n
由于95=19·n,所以f(x)+95≥f(x+95)=f(x+1+94)≥f(x+1)+94
得f(x+1)≤f(x)+1
同理,由f(x+94)≥f(x)+94得f(x+94m)≥f(x)+94m
取m=18,因94·18=1692=19·89+1,所以f(x)+1692≤f(x+1692)≤f(x+1)+1691
得f(x+1)≥f(x)+1
所以f(x+1)=f(x)+1
寂寂落定的漏洞在于:事先肯定了f(x+1)与f(x)+1有恒定方向的不等式成立.这可不一定呀.
其实,我们只能证明f(x+1)=f(x)+1,即可得到最小正周期为1.证明如下:
∵f(x+19)≤f(x)+19,∴f(x+19n)≤f(x+19(n-1))+19≤…≤f(x)+19n
由于95=19·n,所以f(x)+95≥f(x+95)=f(x+1+94)≥f(x+1)+94
得f(x+1)≤f(x)+1
同理,由f(x+94)≥f(x)+94得f(x+94m)≥f(x)+94m
取m=18,因94·18=1692=19·89+1,所以f(x)+1692≤f(x+1692)≤f(x+1)+1691
得f(x+1)≥f(x)+1
所以f(x+1)=f(x)+1
看了 函数f:R→R满足下述条件:...的网友还看了以下:
f(x)具有二阶连续导数和f(x)具有连续的二阶导数有什么区别y=f(2x),其中f(x)具有二阶 2020-05-21 …
已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]①若f(x)无零点,则g(x)> 2020-05-23 …
已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最 2020-06-07 …
点集拓扑的一个问题设U为拓扑空间X的开集,F为X的一个紧致闭集族,F的所有集合之交包含于U,证明: 2020-07-03 …
问一道数学题,科大上p175我这样做的:(1)将等式两边求导:1=f`*e^f+f*e^f*f`= 2020-07-18 …
设A={1,2,3,4,5,6},则满足条件f(f(x))=f(x)的映射f:A→A的个数为()设 2020-07-30 …
已知X={1,2,3},f:X→X,且满足f[f(x)]=f(x),则满足要求的映射有多少个?如题 2020-07-30 …
正多边形内两两连接顶点后,三角形的个数设正N边形.设函数F(N)代表两两连接所有顶点后该图形内含有 2020-08-02 …
已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]①若f(x)无零点,则g(x)>0 2020-12-23 …
因为f(x+2)是偶函数,所以f(x)有对称轴为x=2,为什么?(这句话一定对,不要说不对)答的对有 2021-02-02 …