早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 203 与∫∫▏y-x▕dxdy 相关的结果,耗时46 ms
二重积分对称区域上奇偶函数的积分性质中关于X轴,Y轴和原点对称的疑问?积分区域D关于原点对称,1、∫∫f(x,y)dxdy(在区域D上积分)=0(当f关于x,y的奇函数,即f(-x,-y)=-f(x,y)时)2、∫∫f(x,y)dxdy
数学
y)dxdy(在区域D*上积
对坐标的曲面积分∫∫(xz)dxdy其中是平面x=0,y=0,z=0,x+y+z=1所围成的空间区域的整个边界曲面的外侧∫∫E(xz)dxdy其中是E平面x=0,y=0,z=0,x+y+z=1所围成的空间区域的整个边界曲面的外侧对坐标的曲面
数学
二重积分∫∫|x^2+y^2-1|dxdy∫∫(D)|x^2+y^2-1|dxdy其中D为正方形区域0≤x≤1,0≤y≤1
其他
曲面积分∫∫2xydydz-y²dxdz+z²dxdy,Σ是x²+y²=9与平面z=0,z=2所围立体的全表面外侧曲面积分∫∫2xydydz-y²dxdz+z²dxdy其中Σ是圆柱面x²+y²=9与平面z=0,z=2所围立体的全表面外侧
数学
计算曲面积分I=∫∫(S)2(1-x^2)dydz+8xydzdx+z(z-4x)dxdy,其中S为z-x^2+y^2(0≤z≤4)计算曲面积分I=∫∫2(1-x^2)dydz+8xydzdx+z(z-4x)dxdy,其中S为z-x^2+y^2(0≤z≤4)并取上侧,
数学
f(x)在[0,1]有连续的导数,f(0)=1,且∫∫f'(x+y)dxdy=∫∫f(t)dxdy,积分区域Dt={(x,y)|0
数学
设函数f(x)在区间[0,1]上有连续导数,f(0)=1,且满足∫∫Dtf'(x+y)dxdy=∫∫Dtf(t)dxdy,其中Dt={(x,y)|0
数学
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y′(x)≠0,x=x(y)是y=y(x)的反函数.(Ⅰ)将x=x(y)所满足的微分方程d2xdy2+(y+sinx)(dxdy)3=0变换为y=y(x)满足的微分方程;(Ⅱ)
其他
,y′(0)=32的解.
概率论Z=X+Y分布课本上讲的疑惑课本:设X,Y是两个独立的随机变量.概率密度分别为fx(x),fy(y),求Z=X+Y概率密度.Fz(z)=P{Z≤z}=P{X+Y≤z}这些我都明白,但是下面我就不懂了.=∫∫fx(x)fy(y)dxdy(积分范围x
其他
是fx(x)fy(y)怎么把
已知函数f(x,y,z)连续,Σ是平面x-y+z=1在第四卦限的上侧,将对坐标的曲面积分:I=∫∫[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dxdz+[f(x,y,z)+z]dxdy化为对面积的曲面积分,并求出结果.
数学
<
6
7
8
9
10
11
12
13
14
15
>
热门搜索: