早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 3633 与1/3=1∴1=O 相关的结果,耗时513 ms
高二立体几何已知A、B、C三点不共线,对平面ABC外的任一点O,确定在下列条件下,点M是否与A、B、C一定共面.向量OM=1/3向量OA+1/3向量OB+1/3向量OC本人初学立体几何,不太懂,帮我指点迷津
数学
定义映射f:(x,y)→(x,3x),△OAB中O(0,0),A(1,3),B(3,1),则△OAB在映射f的作用下得到的图形的面积是π3π3.
其他
(2009•本溪二模)如图,⊙O上两点C、E关于直径AB对称,连接AC、BC,过C作CE的垂线,交⊙O于点D,交EB的延长线交于点F,且BC:CA=3:1,AB=10,(1)证明:B是EF的中点;(2)求CF的长.
其他
如图,以正方形ABCD的边CD为直径作⊙O,以顶点C为圆心、边CB为半径作 ⌒BD, E为BC的延长线上一点,且CD、CE的长恰为方程x2-2(根号3+1)x+43=0的两根,其中CD<CE.连结DE交⊙O于点F.(1)求DF的长
数学
要
一:若O和F点分别是椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量OPX向量FP的最大值是?二:过椭x^2/5+y^2/4=1的右焦点作一条斜率为2的直线与椭圆交与A.B两点,O为坐标原点,则三
数学
为90°,tanB=3/4,
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.(1)证明:EM⊥BF;(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
数学
若点O和点F(-2,0)分别为双曲线x²/a²-y²=1(a>1)的中心和左焦点,点P为双曲线右支上的任意一点,则向量OP·向量FP的取值范围()A.[3-2根号3,正无穷)B.[3+2根号3,正无穷)C.[-7/4,正无
数学
4上一点P到双曲线的一个焦点
19.设A,B为圆x*2+y*2=1上两点,O为坐标原点(A,O,B不共线)(1)求证:向量OA+向量OB与向量OA-向量OB垂直20.(09湖南卷)在△ABC,已知2向量AB*向量AC=√3|向量AB|*|向量AC|=3BC*2,求角A,B,C的大小12.已知/a
数学
量/=2,/b向量/≠0,且
如图,AB是圆O的直径,C是圆O上不同于A,B的一点,PA⊥平面ABC,E是PC的中点,AB=3,PA=AC=1.(1)求证:AE⊥PB;(2)求二面角A-PB-C的正弦值.
数学
摩擦传动是传动装置中的一个重要模型,如图1历示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲:r乙=3:1,且在正常工作时两轮盘不打
物理
离轴心O、O′的间距RA=2
<
23
24
25
26
27
28
29
30
31
32
>
热门搜索: