早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,菱形ABCD中,E、F分别是边AD,CD上的两个动点(不与菱形的顶点重合),且满足CF=DE,∠A=60°.(1)写出图中一对全等三角形:;(2)求证:△BEF是等边三角形;(3)若菱形ABCD的

题目详情
如图,菱形ABCD中,E、F分别是边AD,CD上的两个动点(不与菱形的顶点重合),且满足CF=DE,∠A=60°.
(1)写出图中一对全等三角形:______;
(2)求证:△BEF是等边三角形;
(3)若菱形ABCD的边长为2,设△DEF的周长为m,则m的取值范围为
2+
3
≤m<4
2+
3
≤m<4
(直接写出答案);
(4)连接AC分别与边BE、BF交于点M、N,且∠CBF=15°,试说明:MN2+CN2=AM2
▼优质解答
答案和解析
(1)如图1,△BAE≌△BDF,△BDE≌△BCF,△BAD≌△BCD,共三对;
证明:△BDE≌△BCF.
在△BDE和△BCF中,
BD=BC 
∠C=∠BDE
DE=CF

∴△BDE≌△BCF(SAS).
故答案可以是:△BDE≌△BCF.

(2)证明:如图1,∵由(1)知,△BDE≌△BCF,
∴∠DBE=∠CBF,BE=BF,
∵∠DBC=∠DBF+∠CBF=60°,
∴∠DBF+∠DBE=60°即∠EBF=60°,
∴△BEF为正三角形;


(3)如图1,由(2)知,△BEF是等边三角形,则EF=BE=BF.
则m=DE+DF+EF=AD+BE.
当BE⊥AD时,BE最短,此时△DEF的周长最短
∵在Rt△ABE中,sin60°=
BE
AB
,即
BE
2
=
3
2

∴DE=
3

∴m=2+
3

当点E与点A重合,△DEF的周长最长,此时m=2+2=4.
综上所述,m的取值范围是:2+
3
≤m<4;
故答案是:2+
3
≤m<4;

(4)证明:如图2,把△BNC绕点B逆时针旋转120°,使CB与AB重合,N对应点为N′,连接MN′.则∠NBC=∠N′BA.
∴∠N′BA+∠EBA=60°=∠EBF.
在△N′BM与△NBM中,
BN=BN′
∠N′BM=∠NBM
BM=BM

∴△N′BM≌△NBM(SAS),
∴N′M=NM,∠MN′B=∠MNB=45°.
又∵∠AN′B=∠BNC=180°-(15°+30°)=135°,
∴∠AN′M=135°-45°=90°,
∴MN2+CN2=AM2