如图1,矩形CEFG的一边落在矩形ABCD的一边上,并且矩形CEFG~CDAB,其相似比为k,连接BG、DE.(1)试探究BG、DE的位置关系,并说明理由;(2)将矩形CEFG绕着点C按顺时针(或逆时针)旋转任
如图1,矩形CEFG的一边落在矩形ABCD的一边上,并且矩形CEFG~CDAB,其相似比为k,连接BG、DE.
(1)试探究BG、DE的位置关系,并说明理由;
(2)将矩形CEFG绕着点C按顺时针(或逆时针)旋转任意角度α,得到图形2、图形3,请你通过观察、分析、判断(1)中得到的结论是否能成立,并选取图2证明你的判断;
(3)在(2)中,矩形CEFG绕着点C旋转过程中,连接BD、BF、DF,且k=,AB=8,BC=4,△BDF的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.
答案和解析
(1)BG⊥DE,理由如下:
如图1,∵矩形CEFG~矩形CDAB,
∴∠BCD=∠DCE=90°,
=,
∴△BCG∽△DCE,
∴∠CBG=∠CDE.
延长BG交DE于M.
又∵∠CGB=∠DGM,
∴∠BCG=∠DMG=90°,
∴BG⊥DE;
(2)BG⊥DE仍然成立,理由如下:
如图2,∵矩形CEFG~矩形CDAB,
∴∠BCD=∠GCE=90°,=,
∴∠BCG=∠DCE,
∴△BCG∽△DCE,
∴∠CBG=∠CDE,
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
∴∠CDE+∠DHO=90°,
∴∠DOH=90°,
∴BG⊥DE;
(3)△BDF的面积是否存在最大值与最小值.理由如下:
∵矩形CEFG~CDAB,其相似比k=,BD==4,
∴CF=,
∴点F的轨迹是以点C为圆心,为半径的圆.
设点C到BD的距离为h,
∴4h=8×4,
解得h=,
∴当点F到BD的距离为+=时,△BDF的面积有最大值,
当点F到BD的距离为-=时,△BDF的面积有最小值,
S最大=×4×=26,
S最小═×4×=6.
线性代数问题.2阶矩阵A1012,验证对任意的f(x) g(x),是否都有f(A) g(A)=g( 2020-05-13 …
求教一道微积分导数题目f(x)和g(x)在R上都有定义,且1.f(x+y)=f(x)g(y)+f( 2020-05-17 …
在矩形ABCD中,AD=12,AB=8,点F是AD边上一点,过点F作∠AFE=∠DFC,交射线AB 2020-06-17 …
如图,边长为6cm的正方形ABCD中,点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时 2020-06-21 …
已知函数f(x)的定义域是负无穷小到0并0到正无穷大,并对定义域中任一x均有f(x).f(-x)= 2020-07-08 …
f,g在R上定义在x=0处可导对于一切x1x2∈R有f(x1+x2)=f(x1)g(x2)+f(x 2020-07-16 …
如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两 2020-07-30 …
:设f(x),g(x)是全不为0的多项式,且次"f(x)/(f(x),g(x))">0,次"G(x 2020-08-03 …
定积分比较大小的问题教材上说如果函数f、g在[a,b]可积,并且f≥g在[a,b]上成立,那么∫ab 2020-11-01 …
已知函数f(x)=x^2+1,且g(x)=f[f(x)],G(x)=g(x)-af(x)已知函数f( 2020-12-08 …