早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证

题目详情
如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.
(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);
(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.
作业搜
▼优质解答
答案和解析
(1)由折叠可得AB=AB′,BE=B′E,
∵四边形ABCD是正方形,
∴AB=DC=DF,∠B′CE=45°,
∴B′E=B′F,
∴AF=AB′+B′F,
即DF+BE=AF;

(2)图(2)的结论:DF+BE=AF;
图(3)的结论:BE-DF=AF;
图(2)的证明:延长CD到点G,使DG=BE,连接AG,
需证△ABE≌△ADG,
∵CB∥AD,
∴∠AEB=∠EAD,
∵∠BAE=∠B′AE,
∴∠B′AE=∠DAG,
∴∠GAF=∠DAE,
∴∠AGD=∠GAF,
∴GF=AF,
∴BE+DF=AF;
图(3)的证明:在BC上取点M,使BM=DF,连接AM,
需证△ABM≌△ADF,
∵∠BAM=∠FAD,AF=AM
∵△ABE≌A′BE
∴∠BAE=∠EAB′,
∴∠MAE=∠DAE,
∵AD∥BE,
∴∠AEM=∠DAB,
∴∠MAE=∠AEM,
∴ME=MA=AF,
∴BE-DF=AF.