早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=-2x+1,当x∈[An,Bn]时,f(x)的值域为[A(n+1),B(n+1)],a1=0.b1=1,数列{An},{Bn}的前n项和为Sn.Tn,设g(n)=(T1+T2+.Tn)-(S1+S2+.Sn),求g(n)

题目详情
已知函数f(x)=-2x+1,当x∈[An,Bn]时,f(x)的值域为[A(n+1),B(n+1)],a1=0.b1=1,数列{An},{Bn}的前n项和
为Sn.Tn,设g(n)=(T1+T2+.Tn)-(S1+S2+.Sn),求g(n)
▼优质解答
答案和解析
f(x)=-2x+1 很显然f(x)是一个单调递减函数
f(An)=B(n+1),即:-2An+1=B(n+1) (1)
f(Bn)=A(n+1),即:-2Bn+1=A(n+1) (2)
(2)-(1)得:
A(n+1)-B(n+1)=-2Bn+2An=2(An-Bn)
所以
{An-Bn}是等比数列,A1-B1=-1 公比q=2
数列{An},{Bn}的前n项和为Sn.Tn

Sn-Tn=(-1)(1-2^n)/(1-2)=1-2^n, Tn-Sn=2^n-1
g(n)=(T1+T2+.Tn)-(S1+S2+.Sn)
=(T1-S1)+(T2-S2)+...+(Tn-Sn)
=2-1+2^2-1+...+2^n-1
=2(1-2^n)/(1-2)-n
=2^(n+1)-n-2