早教吧作业答案频道 -->数学-->
数列(2n+1)(2分之1)的n次方的前n项和
题目详情
数列(2n+1)(2分之1)的n次方的前n项和
▼优质解答
答案和解析
an =(2n+1)(1/2)^n
= n(1/2)^(n-1) + (1/2)^n
Sn =a1+a2+..+an
= {summaiton(i:1->n)i.(1/2)^(i-1)} + (1-(1/2)^n)
consider
1+x+x^2+..+x^n = (x^(n+1)- 1)/(x-1)
1+2x+..+nx^(n-1) =[(x^(n+1)- 1)/(x-1)]'
= [nx^(n+1) - (n+1)x^n + 1]/(x-1)^2
put x=1/2
summation(i:1->n) i.(1/2)^(i-1)
= 4(n.(1/2)^(n+1) - (n+1).(1/2)^n + 1)
= 4[1- (n+2).(1/2)^(n+1)]
Sn = {summaiton(i:1->n)i.(1/2)^(i-1)} + (1-(1/2)^n)
= 4[1- (n+2).(1/2)^(n+1)] +(1-(1/2)^n)
= 5 -(2n+5)(1/2)^n
= n(1/2)^(n-1) + (1/2)^n
Sn =a1+a2+..+an
= {summaiton(i:1->n)i.(1/2)^(i-1)} + (1-(1/2)^n)
consider
1+x+x^2+..+x^n = (x^(n+1)- 1)/(x-1)
1+2x+..+nx^(n-1) =[(x^(n+1)- 1)/(x-1)]'
= [nx^(n+1) - (n+1)x^n + 1]/(x-1)^2
put x=1/2
summation(i:1->n) i.(1/2)^(i-1)
= 4(n.(1/2)^(n+1) - (n+1).(1/2)^n + 1)
= 4[1- (n+2).(1/2)^(n+1)]
Sn = {summaiton(i:1->n)i.(1/2)^(i-1)} + (1-(1/2)^n)
= 4[1- (n+2).(1/2)^(n+1)] +(1-(1/2)^n)
= 5 -(2n+5)(1/2)^n
看了 数列(2n+1)(2分之1)...的网友还看了以下:
已知数列是首项为1,公差为2的等差数列,对每一个N*,在ak与ak+1之间插入个2,得到新数列{bn 2020-03-30 …
等比数列{an}同时满足下列条件:①a1+a6=33②a3a4=32③三个数4a22a3a4依次成 2020-05-13 …
已知递增数列{an}满足:a1=1,2a(n+1)=an+a(n+2)(n∈N*),且a1,a2, 2020-05-13 …
已知等差数列{an}的前6项和为60,且a1,a6,a21成等比数列1.求数列{an}的通项公式2 2020-05-14 …
已知等差数列{an}、等比数列{bn}满足a1+a2=a3,b1b2=b3,且a3,a2+b1,a 2020-05-14 …
已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列1求数列{an}的通项, 2020-05-16 …
求解答啊已知数列[an]是首项a1=¼的等比数列,前n项和Sn中S3,S4,S2成等差数列.1.求 2020-05-17 …
数列1.在数列{an}中,a1=1,且满足an-an-1=n(n>1)①求a2,a3及数列{an} 2020-05-17 …
麻烦求数列?1.三数成等差数列,它们的和为12,首尾三数的积为12,求此三数2.一张梯子最高一级宽 2020-06-03 …
已知等比数列(an)的公比q不等于1,a1=32,且2a2、3a3、4a4成等差数列.(1)求数列 2020-07-08 …