早教吧作业答案频道 -->数学-->
已知等轴双曲线C:x2-y2=a2(a>0)的右焦点为F,O为坐标原点.过F作一条渐近线的垂线FP且垂足为P,.(1)求等轴双曲线C的方程;(2)假设过点F且方向向量为的直线l交双曲线C于A、B两点
题目详情
已知等轴双曲线C:x2-y2=a2(a>0)的右焦点为F,O为坐标原点. 过F作一条渐近线的垂线FP且垂足为P,.
(1)求等轴双曲线C的方程;
(2)假设过点F且方向向量为的直线l交双曲线C于A、B两点,求的值;
(3)假设过点F的动直线l与双曲线C交于M、N两点,试问:在x轴上是否存在定点P,使得为常数.若存在,求出点P的坐标;若不存在,试说明理由.
(1)求等轴双曲线C的方程;
(2)假设过点F且方向向量为的直线l交双曲线C于A、B两点,求的值;
(3)假设过点F的动直线l与双曲线C交于M、N两点,试问:在x轴上是否存在定点P,使得为常数.若存在,求出点P的坐标;若不存在,试说明理由.
▼优质解答
答案和解析
(1)根据双曲线为等轴双曲线,可求出渐近线方程,再根据P点为过F作一条渐近线的垂线FP的垂足,以及,可求出双曲线中c的值,借助双曲线中a,b,c的关系,得到双曲线方程.
(2)根据直线l的方向向量以及f点的坐标,可得直线l的方程,与双曲线方程联立,解出x1+x2,x1x2的值,代入中,即可求出的值.
(3)先假设存在定点P,使得为常数,设出直线l的方程,与双曲线方程联立,解x1+x2,x1x2,用含k的式子表示,再代入中,若为常数,则结果与k无关,求此时m的值即可.
【解析】
(1)设右焦点坐标为F(c,0),(c>0),
∵双曲线为等轴双曲线,∴渐近线必为y=±x
由对称性可知,右焦点F到两条渐近线距离相等,且∠POF=.
∴△OPF为等腰直角三角形,则由||=⇒||=c=2
又∵等轴双曲线中,c2=2a2⇒a2=2
∴等轴双曲线C的方程为x2-y2=2
(2)设A(x1,y1),B(x2,y2)为双曲线C与直线l的两个交点
∵F(2,0),直线l的方向向量为=(1,2),
∴直线l的方程为,即y=2(x-2)
代入双曲线C的方程,可得,x2-4(x-2)2=2⇒3x2-16x+18=0
∴x1+x2=,x1x2=6,
而=x1x2+y1y2=x1x2+(x1-2)(x2-2)=5x1x2-8(x1+x2)+16=
(3)假设存在定点P,使得为常数,
其中,M(x1,y1),N(x2,y2)为双曲线C与直线l的两个交点的坐标,
①当直线l与x轴不垂直是,设直线l的方程为y=k(x-2),
代入双曲线C的方程,可得(1-k2)x2+4k2x-(4k2+2)=0
由题意可知,k=±1,则有x1+x2=,x1x2=
∴=(x1-m)(x2-m)+k2(x1-2)(x2-2)
=(4k2+1)x1x2-(2k2+m)(x1+x2)+4k2+m2
=+4k2+m2
=+m2=+m2+2(1-2m)
要使是与k无关的常数,当且仅当m=1,此时,=-1
②当直线l与x轴垂直时,可得点M(2,),N(2,-)
若m=1,=-1亦为常数
综上可知,在x轴上是否存在定点P(1,0),使得=-1为常数.
(2)根据直线l的方向向量以及f点的坐标,可得直线l的方程,与双曲线方程联立,解出x1+x2,x1x2的值,代入中,即可求出的值.
(3)先假设存在定点P,使得为常数,设出直线l的方程,与双曲线方程联立,解x1+x2,x1x2,用含k的式子表示,再代入中,若为常数,则结果与k无关,求此时m的值即可.
【解析】
(1)设右焦点坐标为F(c,0),(c>0),
∵双曲线为等轴双曲线,∴渐近线必为y=±x
由对称性可知,右焦点F到两条渐近线距离相等,且∠POF=.
∴△OPF为等腰直角三角形,则由||=⇒||=c=2
又∵等轴双曲线中,c2=2a2⇒a2=2
∴等轴双曲线C的方程为x2-y2=2
(2)设A(x1,y1),B(x2,y2)为双曲线C与直线l的两个交点
∵F(2,0),直线l的方向向量为=(1,2),
∴直线l的方程为,即y=2(x-2)
代入双曲线C的方程,可得,x2-4(x-2)2=2⇒3x2-16x+18=0
∴x1+x2=,x1x2=6,
而=x1x2+y1y2=x1x2+(x1-2)(x2-2)=5x1x2-8(x1+x2)+16=
(3)假设存在定点P,使得为常数,
其中,M(x1,y1),N(x2,y2)为双曲线C与直线l的两个交点的坐标,
①当直线l与x轴不垂直是,设直线l的方程为y=k(x-2),
代入双曲线C的方程,可得(1-k2)x2+4k2x-(4k2+2)=0
由题意可知,k=±1,则有x1+x2=,x1x2=
∴=(x1-m)(x2-m)+k2(x1-2)(x2-2)
=(4k2+1)x1x2-(2k2+m)(x1+x2)+4k2+m2
=+4k2+m2
=+m2=+m2+2(1-2m)
要使是与k无关的常数,当且仅当m=1,此时,=-1
②当直线l与x轴垂直时,可得点M(2,),N(2,-)
若m=1,=-1亦为常数
综上可知,在x轴上是否存在定点P(1,0),使得=-1为常数.
看了 已知等轴双曲线C:x2-y2...的网友还看了以下:
待定系数法求函数这是我作业里的题f(x)为一次函数,f[f(f(x))]=8x+7,求f(x)我知道 2020-03-30 …
f(x)为一次函数,2f(2x-1)+3f(x+1)=5x+6求f(x)的解析式首先设f(x)解析 2020-05-21 …
已知f(x)为一次函数且f(f(x))=9x+4,则f(x)的解析式为?不要只说答案、答案我有、我 2020-05-23 …
设函数y=f(x)为一次函数,已知f(-1)=8.f(2)=1.求f(-11).如题,麻烦详细一点 2020-06-12 …
设函数y=f(x)为一次函数,已知f(-1)=8,f(2)=1,求f(-11);要很清晰的解题过程 2020-06-12 …
一次函数,1.f(x)=2x+a,f(1)=4,求a的值2.设y=f(x)为一次函数,已知f(2) 2020-07-09 …
数学求解积分方程已知f(x)为一次函数,且f(x)=x+2∫f(t)dt(积分区间:0→1),求f 2020-07-21 …
设f(x)为一多项式若f(x+1)f(x)除以x^2+x+1之馀式为3x+1求f(x)除以x^2+ 2020-07-27 …
设F(X)为一多项式.若(X+1)F(X)除以X^2+X+1的馀式为3X+1.求F(X)除以X^2 2020-07-27 …
余试定理1以(x+1)^2除x^50+1之余式为2设f(x)为一多项式,若(x+1)*f(x)除以 2020-07-30 …