早教吧作业答案频道 -->数学-->
已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(4,0),B(0,-4),P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.(1)求直线A
题目详情
已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(4,0),B(0,-4),P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.
(1)求直线AB的解析式;
(2)用m的代数式表示点M的坐标;
(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.
(1)求直线AB的解析式;
(2)用m的代数式表示点M的坐标;
(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.
▼优质解答
答案和解析
(1)设直线AB的解析式为y=kx+b(k≠0).
则
解
∴直线AB的解析式为y=x-4.
(2)作MN⊥y轴于点N.
∵△APM为等腰直角三角形,PM=PA,
∴∠APM=90°.
∴∠OPA+∠NPM=90°.
∵∠NMP+∠NPM=90°,
∴∠OPA=∠NMP.
又∵∠AOP=∠PNM=90°,
∴△AOP≌△PNM.(AAS)
∴OP=NM,OA=NP.
∵PB=m(m>0),
∴NM=m+4,ON=OP+NP=m+8.
∵点M在第四象限,
∴点M的坐标为(m+4,-m-8).
(3)答:点Q的坐标不变.
设直线MB的解析式为y=nx-4(n≠0).
∵点M(m+4,-m-8).
在直线MB上,
∴-m-8=n(m+4)-4.
整理,得(m+4)n=-m-4.
∵m>0,
∴m+4≠0.
解得 n=-1.
∴直线MB的解析式为y=-x-4.
∴无论m的值如何变化,点Q的坐标都为(-4,0).
则
|
|
∴直线AB的解析式为y=x-4.
(2)作MN⊥y轴于点N.
∵△APM为等腰直角三角形,PM=PA,
∴∠APM=90°.
∴∠OPA+∠NPM=90°.
∵∠NMP+∠NPM=90°,
∴∠OPA=∠NMP.
又∵∠AOP=∠PNM=90°,
∴△AOP≌△PNM.(AAS)
∴OP=NM,OA=NP.
∵PB=m(m>0),
∴NM=m+4,ON=OP+NP=m+8.
∵点M在第四象限,
∴点M的坐标为(m+4,-m-8).
(3)答:点Q的坐标不变.
设直线MB的解析式为y=nx-4(n≠0).
∵点M(m+4,-m-8).
在直线MB上,
∴-m-8=n(m+4)-4.
整理,得(m+4)n=-m-4.
∵m>0,
∴m+4≠0.
解得 n=-1.
∴直线MB的解析式为y=-x-4.
∴无论m的值如何变化,点Q的坐标都为(-4,0).
看了 已知:如图,平面直角坐标系x...的网友还看了以下:
圆0和o'都经过点A,B.点P在BA延长线上,过P作圆O的割线PCD交圆0于CD两点作圆o'的切线P 2020-03-31 …
已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB 2020-07-16 …
已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB 2020-07-16 …
体积为183的正三棱锥A-BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R: 2020-07-20 …
已知正三角形ABC的三个顶点都在球心为O、半径为3的球面上,且三棱锥O-ABC的高为2,点D是线段 2020-07-20 …
已知正四面体ABCD的四个顶点都在球心为O的球面上,点P为棱BC的中点,BC=62,过点P作球O的 2020-07-21 …
一只杯子从某一高度自由下落,落在水泥地面上会碎,而落在柔软的地毯上不会碎,关于杯子与地面、地毯的相 2020-08-01 …
如图,已知△ABC,求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求:尺规作图,保 2020-08-02 …
阅读下面材料:在数学课上,老师提出如下问题:尺规作如图1:作∠A'O'B'=∠AOB.已知:∠AOB 2020-11-06 …
如图,点A是双曲线y=kx(x>0)上的一点,连结OA,在线段OA上取一点B,作BC⊥x轴于点C,以 2020-11-08 …