早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设A=(a1,a2,a3),向量组a1,a2线性无关,且-2a1+a2=a3,又B3=a1+a2+a3,求方程组AX=B的通解.

题目详情
设A=(a1,a2,a3),向量组a1,a2线性无关,且-2a1+a2=a3,又B3=a1+a2+a3,
求方程组AX=B的通解.
▼优质解答
答案和解析
因为向量组a1,a2线性无关,且-2a1+a2=a3
所以 r(A) = 2
所以 Ax=0 的基础解系含 3-2=1 个解向量
又由 -2a1+a2=a3 知 (-2,1,-1)^T 是 Ax=0 的基础解系.
由 B=a1+a2+a3 知 (1,1,1)^T 是 Ax=B 的解
所以 Ax=B 的通解为 (1,1,1)^T + c (-2,1,-1)^T
PS. 加点悬赏会快些得到解答