早教吧作业答案频道 -->数学-->
我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+
题目详情
我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据___,易证△AFG≌___,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系___时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据___,易证△AFG≌___,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系___时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.
▼优质解答
答案和解析
(1)∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:SAS;△AFG;
(2)∠B+∠D=180°时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF;
(3)猜想:DE2=BD2+EC2,
证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,
∴△AEC≌△ABE′,
∴BE′=EC,AE′=AE,
∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°,
∴∠ABC+∠ABE′=90°,
即∠E′BD=90°,
∴E′B2+BD2=E′D2,
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°,
∴∠E′AB+∠BAD=45°,
即∠E′AD=45°,
在△AE′D和△AED中,
,
∴△AE′D≌△AED(SAS),
∴DE=DE′,
∴DE2=BD2+EC2.
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
|
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:SAS;△AFG;
(2)∠B+∠D=180°时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
|
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF;
(3)猜想:DE2=BD2+EC2,
证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,
∴△AEC≌△ABE′,
∴BE′=EC,AE′=AE,
∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°,
∴∠ABC+∠ABE′=90°,
即∠E′BD=90°,
∴E′B2+BD2=E′D2,
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°,
∴∠E′AB+∠BAD=45°,
即∠E′AD=45°,
在△AE′D和△AED中,
|
∴△AE′D≌△AED(SAS),
∴DE=DE′,
∴DE2=BD2+EC2.
看了我们可以通过类比联想,引申拓展...的网友还看了以下:
△ABC,∠ACB=90度,D是BC延长线上的一点,E是AB上一点且EC垂直平分BD,DE交AC于F 2020-03-30 …
已知点P在曲线y=4/e^x+1上,α为曲线在点P处的切线的倾斜角,则α的取值范围是y=4/[(e 2020-04-11 …
已知点P在曲线y=4/(e^x+1)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是y=4/[ 2020-04-11 …
已知D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.已知D是AB 2020-04-27 …
已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1= 2020-05-16 …
(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G 2020-06-12 …
数学正方形几何体已知:正方形ABCD中,D为DC重点.E为BC上一点,EC=1/4BC.连接AF. 2020-06-14 …
如图,在△ABC中,已知∠ABC=30°,点D在BC上,点E在AC上,∠BAD=∠EBC,AD交B 2020-06-27 …
在△abc中,AB=AC,∠BAC=120°,D是BC的重点,DE⊥于E,已知AB=6CM,求AE 2020-06-27 …
已知:△ABC中,AD为BC边上的中线,E是AD上一点,且CE=CD.已知:△ABC中,AD为BC边 2020-12-05 …