早教吧 育儿知识 作业答案 考试题库 百科 知识分享

我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+

题目详情
我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
作业帮
(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据___,易证△AFG≌___,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系___时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.
▼优质解答
答案和解析
(1)∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
AE=AG
∠EAF=∠GAF
AF=AF

∴△AFE≌△AFG(SAS),
∴EF=FG,作业帮
即:EF=BE+DF,
故答案为:SAS;△AFG;
(2)∠B+∠D=180°时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
AE=AG
∠EAF=∠GAF
AF=AF
作业帮
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF;
(3)猜想:DE2=BD2+EC2
证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,
∴△AEC≌△ABE′,
∴BE′=EC,AE′=AE,
∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°,
∴∠ABC+∠ABE′=90°,
即∠E′BD=90°,
∴E′B2+BD2=E′D2
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°,
∴∠E′AB+∠BAD=45°,
即∠E′AD=45°,
在△AE′D和△AED中,
AE′=AE
∠E′AD=∠EAD
AD=AD

∴△AE′D≌△AED(SAS),
∴DE=DE′,
∴DE2=BD2+EC2