早教吧作业答案频道 -->数学-->
设n是自然数,求证:10能被(n^5-n)整除.
题目详情
设n是自然数,求证:10能被(n^5-n)整除.
▼优质解答
答案和解析
楼主的问题应改成:求证:10能整除(n^5-n),这很简单
证明:数学归纳法证明
①n=1,2时结论成立②设n=k(k≥2)结论成立,即10整除(k^5-k)
当n=k+1时,(k+1)^5-k-1=(k^5-k)+5k(k^3+1)+10k^3+10k^2
其中k(k^3+1)=k(k+1)(k^2-k+1)必定为偶数,故5k(k^3+1)能被10整除
从而n=k+1时结论成立
综上得证
证明:数学归纳法证明
①n=1,2时结论成立②设n=k(k≥2)结论成立,即10整除(k^5-k)
当n=k+1时,(k+1)^5-k-1=(k^5-k)+5k(k^3+1)+10k^3+10k^2
其中k(k^3+1)=k(k+1)(k^2-k+1)必定为偶数,故5k(k^3+1)能被10整除
从而n=k+1时结论成立
综上得证
看了 设n是自然数,求证:10能被...的网友还看了以下:
有一些自然数n,满足:2n - n 是3的倍数,3n - n 是5的倍数,5n - n是2的倍数. 2020-05-16 …
设a,m,n为自然数,a>1.证明若a^m+1|a^n+1,那么m|n设a,b,m,n为自然数,同 2020-05-16 …
设n为自然数,求证:(2-1/n)×(2-3/n)×(2-5/n)×...×(2-2n-1/n)≥ 2020-05-20 …
20.设有以下宏定义,则执行语句“z=2*(N+Y(5+1));”后,z的值为()。20.设有以下 2020-07-10 …
n为非0自然数,试证n^13n定能被2730整除.2730=2*3*5*7*13,n^13-n=n 2020-07-22 …
设n为自然数,求证:(2-1/n)×(2-3/n)×(2-5/n)×...×(2-2n-1/n)≥ 2020-07-25 …
n是任意自然数,求证4不能整除n^2+2考虑n分别是奇数/偶数事的情况n是奇数的时候很显然n^2+ 2020-07-30 …
关于数学归纳法的的疑惑以前做题都是硬记结论然后套用,证当n=1时...假设n=k时成立,证n=k+ 2020-08-01 …
数学归纳法:难道错了!证明An=(1+1/n)^(1/n)为有理数证明:n=1时显然成立,假设n= 2020-08-01 …
一个正整数,如果把它的数字逆排,所得的数仍然和原数相同,便称之为“回文数”.设n是5位回文数,n的个 2020-11-20 …