早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,且Sn=n^2+2n.数列{bn}中,b1=1,它的第n项bn是数列{an}的第b(n-1)项(n≥2)(1)若存在常数t使数列{bn+t}是等比数列,求数列{bn}的通项公式(2)求证b(n+1)>2bn要在7小时内拿到答案,
题目详情
已知数列{an}的前n项和为Sn,且Sn=n^2+2n.数列{bn}中,b1=1,它的第n项bn是数列{an}的第b(n-1)项(n≥2)
(1)若存在常数t使数列{bn +t}是等比数列,求数列{bn}的通项公式
(2)求证b(n+1)>2bn
要在7小时内拿到答案,急用!
(1)若存在常数t使数列{bn +t}是等比数列,求数列{bn}的通项公式
(2)求证b(n+1)>2bn
要在7小时内拿到答案,急用!
▼优质解答
答案和解析
由Sn=n^2+2n得an=2n+1
因为第n项bn是数列{an}的第b(n-1)项
所以bn=2b(n-1)+1
所以bn+1=2(b(n-1)+1)
bn+1=2^n所以bn=2^n-1
b(n+1)-2bn=2^(n+1)-1-2(2^n-1)
=1
b(n+1)>2bn
因为第n项bn是数列{an}的第b(n-1)项
所以bn=2b(n-1)+1
所以bn+1=2(b(n-1)+1)
bn+1=2^n所以bn=2^n-1
b(n+1)-2bn=2^(n+1)-1-2(2^n-1)
=1
b(n+1)>2bn
看了 已知数列{an}的前n项和为...的网友还看了以下:
已知数列{an}的首项a1=1且存在常数p,r,t(其中r≠0),使得an+a(n+1)=r·2^ 2020-05-13 …
已知数列{an}的首项a1=1且存在常数p,r,t(其中r≠0),使得an+a(n+1)=r·2^ 2020-05-13 …
定义数列{an}:a1=1,当n≥2时,an=an−1+r,n=2k,k∈N*2an−1,n=2k 2020-05-13 …
已知数列{an}的前n项和为Sn,且Sn=n^2+2n.数列{bn}中,b1=1,它的第n项bn是 2020-05-17 …
随机变量的概率分布列为p(x=n)=a/n×(n+1) n=1,2,3,4.其中a为随机变量的概率 2020-05-17 …
已知数列{an}的前n项和为Sn,Sn与an满足关系Sn=2-(n+2)an/n(n∈N*)(1) 2020-07-28 …
关于数列的已知等比数列{an}的前n项和An=(1/3)^n-c(c为常数),数列{bn}(bn> 2020-07-30 …
高中数学——数列已知有穷数列{a(n)},a(1)=2,前n项和为S(n),且a(n+1)=(a- 2020-08-02 …
已知数列{an}的前n项和Sn=a[2−(12)n−1]−b[2−(n+1)(12)n−1](n=1 2020-12-07 …
已知数列{an}的前n项和为Sn,满足Sn=2n2-n,且a1,a2依次是等比数列{bn}的前两项. 2021-01-05 …