早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知奇数f(x)的定义域为(-∞,0)U(0,+∞),且f(x)在(0,+∞)上是减函数,f(1)=0,函数g(x)=-x²+mx+1-2mx∈[0,1](1)证明:函数f(x)在(-∞,0)上是减函数(2)解关于x的不等式f(x)>0(3)当x∈[0,1]时,求使得g(x)<0且f[g

题目详情
已知奇数f(x)的定义域为(-∞,0)U(0,+∞),且f(x)在(0,+∞)上是减函数,f(1)=0,函数g(x)=-x²+mx+1-2m x∈[0,1]
(1)证明:函数f(x)在(-∞,0)上是减函数
(2)解关于x的不等式f(x)>0
(3)当x∈[0,1]时,求使得g(x)<0且f[g(x)]>0恒成立的m的取值范围
▼优质解答
答案和解析
(1)、令x1>x2,且x1,x2都包含于(0,+∞),因为f(x)为奇函数,所以f(x)=-f(-x),x包含于(0,+∞),则-x包含于(-∞,0),又f(x)是减函数,所以f(x1)=-f(-x1)<f(x2)=-f(-x2),即f(-x1)>f(-x2),又因为-x1<-x2,-x1,-x2都包含于(-∞,0),所以f(x)在(-∞,0)上是减函数
(2)、因为f(x)在(-∞,0)和(0,+∞)是减函数,由f(1)=0,可知f(x)>0的解为x<1,x≠0;又f(x)为奇函数,所以f(-1)=0,可知,f(x)>0的解为x<-1,综上可知f(x)>0的解为(-∞,-1),(0,1)
(3)、由(2)可得f[g(x)]>0成立,则要求g(x)<-1或0<g(x)<1,x包含于(0,1);又要求g(x)<0成立,即要求g(x)<-1恒成立,即-x²+mx+1-2m<-1恒成立时m的取值,即m>(x²-2)/(x-2),x包含于【0,1】恒成立,即(x²-2)/(x-2)的最大值,可求得其最大值为2根号2-4,即m>2根号2-4为所求取值范围.