早教吧作业答案频道 -->数学-->
已知函数f(x)=(x-1)^2,数列an是公差为d的等差数列,bn是公比为q的等比数列.若a1=f(d-值1),a3=f(d+1),b1=f(q-1),b3=f(q+1) (Ⅰ)求数列an,bn的通项公式; (Ⅱ)设数列cn对任意自然数n均有c1/b1+c2/2b2+……+cn/nbn=an+1,
题目详情
已知函数f(x)=(x-1)^2,数列an是公差为d的等差数列,bn是公比为q的等比数列.若a1=f(d-值
1),a3=f(d+1),b1=f(q-1),b3=f(q+1) (Ⅰ)求数列an,bn的通项公式; (Ⅱ)设数列cn对任意自然数n均有c1/b1+c2/2b2+……+cn/nbn=an+1,求c1+c3+……+c(2n-1) 的和Tn
1),a3=f(d+1),b1=f(q-1),b3=f(q+1) (Ⅰ)求数列an,bn的通项公式; (Ⅱ)设数列cn对任意自然数n均有c1/b1+c2/2b2+……+cn/nbn=an+1,求c1+c3+……+c(2n-1) 的和Tn
▼优质解答
答案和解析
a3-a1=2d=f(d+1)-f(d-1)
=d^2-(d-2)^2
=4d-4
所以2d=4----> d=2
a1=f(2-1)=f(1)=(1-1)^2=0
所以an=2*(n-1)
b3/b1=q^2=q^2/(q-2)^2
q-2=1或q-2=-1
得q1=3或q2=1
当q1=3时,b1=4---->得:bn=4*3^(n-1)
当q2=1时,b1=1---->得:bn=1是一个常数列
=d^2-(d-2)^2
=4d-4
所以2d=4----> d=2
a1=f(2-1)=f(1)=(1-1)^2=0
所以an=2*(n-1)
b3/b1=q^2=q^2/(q-2)^2
q-2=1或q-2=-1
得q1=3或q2=1
当q1=3时,b1=4---->得:bn=4*3^(n-1)
当q2=1时,b1=1---->得:bn=1是一个常数列
看了 已知函数f(x)=(x-1)...的网友还看了以下:
已知数列{an}中,a1=1且点pn(an,an+1)(n∈N+)在直线x-y+1=0上,(1)求 2020-05-13 …
数列叠加法问题回答的详细点必有重谢!(1)当数列的递推公式可以化为an+1-an=f(n)时,取n 2020-05-14 …
各项为正数的数列{an}的前n项和为Sn,且满足Sn=1/4an^2+1/2an+1/4(n∈N* 2020-07-26 …
数列一题设函数f(n)=n(n为自然数,奇数)=n/2(n为自然数,偶数)设数列an=f(1)+f 2020-07-30 …
给定集合An={1,2,3,…,n}(n∈N+),映射f:An→An满足:①当i,j∈An,i≠j 2020-07-30 …
(2010•海淀区二模)给定集合An={1,2,3,…,n},n∈N*.若f是An→An的映射,且 2020-07-30 …
1.设f(x)=(x^n-x^(-n))/(x^n+x^(-n)),n为正整数,试比较f(根号2) 2020-08-01 …
急经典数已知a1=1,an+1=(an)^2+4an+2(n∈N*),经典数已知a1=1,an+1= 2020-12-12 …
已知函数f(x)=xn+an-1xn-1+an-2xn-2+…+a1x+a0(n>2且n∈N*)设x 2020-12-23 …
函数+数列题已知函数f(x)=x²+x-1,α,β为方程以f(x)=0的两个根(α>β),f'(x) 2020-12-31 …