早教吧作业答案频道 -->数学-->
如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.求证:(1)HF=HG;(2)∠FHG=∠DAC.
题目详情
如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.
求证:(1)HF=HG;(2)∠FHG=∠DAC.
求证:(1)HF=HG;(2)∠FHG=∠DAC.
▼优质解答
答案和解析
证明:(1)连接AF,BG,
∵AC=AD,BC=BE,F、G分别是DC、CE的中点,
∴AF⊥BD,BG⊥AE.
在直角三角形AFB中,
∵H是斜边AB中点,
∴FH=
AB.
同理得HG=
AB,
∴FH=HG.
(2)∵FH=BH,
∴∠HFB=∠FBH;
∵∠AHF是△BHF的外角,
∴∠AHF=∠HFB+∠FBH=2∠BFH;
同理∠AGH=∠GAH,∠BHG=∠AGH+∠GAH=2∠AGH,
∴∠ADB=∠ACD=∠CAB+∠ABC=∠BFH+∠AGH.
又∵∠DAC=180°-∠ADB-∠ACD,
=180°-2∠ADB,
=180°-2(∠BFH+∠AGH),
=180°-2∠BFH-2∠AGH,
=180°-∠AHF-∠BHG,
而根据平角的定义可得:∠FHG=180°-∠AHF-∠BHG,
∴∠FHG=∠DAC.
∵AC=AD,BC=BE,F、G分别是DC、CE的中点,
∴AF⊥BD,BG⊥AE.
在直角三角形AFB中,
∵H是斜边AB中点,
∴FH=
1 |
2 |
同理得HG=
1 |
2 |
∴FH=HG.
(2)∵FH=BH,
∴∠HFB=∠FBH;
∵∠AHF是△BHF的外角,
∴∠AHF=∠HFB+∠FBH=2∠BFH;
同理∠AGH=∠GAH,∠BHG=∠AGH+∠GAH=2∠AGH,
∴∠ADB=∠ACD=∠CAB+∠ABC=∠BFH+∠AGH.
又∵∠DAC=180°-∠ADB-∠ACD,
=180°-2∠ADB,
=180°-2(∠BFH+∠AGH),
=180°-2∠BFH-2∠AGH,
=180°-∠AHF-∠BHG,
而根据平角的定义可得:∠FHG=180°-∠AHF-∠BHG,
∴∠FHG=∠DAC.
看了 如图,已知AE、BD相交于点...的网友还看了以下:
(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求 2020-06-13 …
(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求 2020-06-15 …
如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,B 2020-06-15 …
已知梯形ABCD中,AD//BC,角ABC=角BAD=派/2,AB=BC=2已知在梯形ABCD中, 2020-07-22 …
(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求 2020-07-22 …
如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段 2020-07-24 …
如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段 2020-07-25 …
求解数学题在△ABC中,AB=AC,BC=14,M为BC的中点,∠KMW=∠ABC=,MK和MW分别 2020-11-01 …
恳请楼主们帮忙:等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM 2020-12-31 …
探讨:已知△ABC的两个顶点A(3,7)、B(-2,5),若AC、BC的中心都在坐标轴上,则C点的坐 2021-01-12 …