早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.

题目详情
如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.
▼优质解答
答案和解析
证明:
延长BA到F,使BF=BC,连接EF,FD,
∵在△ABC中,∠A=100°,∠ABC=40°,
∴∠ACB=180°-∠BAC-∠ABC=40°,
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD=20°,
∴∠BDC=∠BAC+∠ABD=100°+20°=120°,
∴∠ADE=∠BDC=120°,
在△FBD和△CBD中,
BF=BC
∠FBD=∠CBD
BD=BD

∴△FBD≌△CBD(SAS),
∴∠BDF=∠BDC=120°=∠ADE,
∵在△ABD中,∠BAD=120°,∠ABD=20°,
∴∠ADB=180°-100°-20°=60°,
∴∠ADF=∠BDF-∠ADB=120°-60°=60°,
∴∠EDF=120°-60°=60°=∠ADF,
在△ADF和△EDF中,
AD=DE
∠ADF=∠EDF
DF=DF

∴△ADF≌△EDF(SAS),
∴AF=EF,
在△FAE和△CBE中,
BF=BC
∠FBE=∠CBE
BE=BE

∴△FAE≌△CBE(SAS),
∴EF=CE,
∴CE=AF,
∴BC=BF=AB+AF=AB+CE,
即BC=AB+CE.