早教吧作业答案频道 -->数学-->
若直线(m+1)x+(n+1)y-2=0与圆(x-1)∧2+(y-1)∧2=1相切,则m+n的取值范围是?
题目详情
若直线(m+1)x+(n+1)y-2=0与圆(x-1)∧2+(y-1)∧2=1相切,则m+n的取值范围是?
▼优质解答
答案和解析
圆心(1,1)半径为1
因为相切
所以由距离公式得
|m+1+n+1-2|/√[(m+1)²+(n+1)²]=1
m^2+2m+1+n^2+2n+1=(m+n)^2
m^2+2m+1+n^2+2n+1=m^2+2mn+n^2
化简得2mn=2(m+n)+2
m+n+1=mn
因为(m-n)^2≥0
m^2-2mn+n^2≥0
m^2+n^2≥2mn
m^2+2mn+n^2≥4mn
(m+n)^2≥4mn
mn≤(m+n)^2/4
令m+n=t,则有t+1≤ t²/4
即t²-4t-4≥ 0
解得t≥ 2+2√2或t ≤2-2√2
∴m+n的取值范围是(-∞,2-2√2]∪[2+2√2,+∞).
是否可以解决您的问题?
圆心(1,1)半径为1
因为相切
所以由距离公式得
|m+1+n+1-2|/√[(m+1)²+(n+1)²]=1
m^2+2m+1+n^2+2n+1=(m+n)^2
m^2+2m+1+n^2+2n+1=m^2+2mn+n^2
化简得2mn=2(m+n)+2
m+n+1=mn
因为(m-n)^2≥0
m^2-2mn+n^2≥0
m^2+n^2≥2mn
m^2+2mn+n^2≥4mn
(m+n)^2≥4mn
mn≤(m+n)^2/4
令m+n=t,则有t+1≤ t²/4
即t²-4t-4≥ 0
解得t≥ 2+2√2或t ≤2-2√2
∴m+n的取值范围是(-∞,2-2√2]∪[2+2√2,+∞).
是否可以解决您的问题?
看了 若直线(m+1)x+(n+1...的网友还看了以下:
等比数列前N项和的问题等比数列前N项和公式a(1-q^n)/1-q里1-q^n如果这里的n次方是偶 2020-05-13 …
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两 2020-05-13 …
1.M,N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为2.曲线y 2020-05-16 …
若f(n)为n的平方+1(n是任意正整数)的各位数字之和,如14的平方+1=197,1+9+7=1 2020-05-17 …
X+1/X=a问X^n+1/X^n=?是我们数学老师提出的:已知X+1/X=a问X^n+1/X^n 2020-06-05 …
初等数论的几个问题(1)证明:当n是奇数时,3|2^n+1;当n是偶数时,3不能整除2^n+1(2 2020-06-12 …
已知An=2n-1(n是自然数)已知An=2n-1(n是自然数)是否存在正数K使(1+1/a1)( 2020-07-22 …
级数√(n+1)-√n级数√(n+1)-√n是发散的,但是为什么在求解的过程中不能用n→∞,Un→ 2020-07-31 …
已知数列{a[n]}的前n项和为S[n],且满足a[n]+2S[n]×S[n-1]=0(n≥0),a 2020-11-01 …