早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 74 与且在闭区间0 相关的结果,耗时99 ms
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0.设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0.求证:至少存在η∈(a,b),使ηf(η)+f'(η)=0.
数学
已知函数f(x)的定义域为闭区间-1到1,若对于任意的x,y属于闭区间-1到1,都有f(x+y)=f(x)+f(y)且x>0时,有f(x)>0(1)证明f(x)为奇函数(2)证明f(x)在闭区间-1到1上为单调递增函数
其他
假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到af(x)dx=0,证明在闭区间a,b上恒有f(x)恒=0不懂的滚,不要乱说.
数学
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f′′′(ξ)=3.
数学
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f′′′(ξ)=3.
数学
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f′′′(ξ)=3.
数学
设函数f(x)在闭区间[a.b]上连续,在开区间(a.b)上可导,且f(a)=f(b)=0,求证至少存在t属于(a.b)使tf(t)+f'(t)=0
数学
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x)>0.若极限limx→a+f(2x−a)x−a存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使b2−a2∫baf(x
其他
存在与(2)中ξ相异的点η,
设fx在闭区间[a,b]上连续,且fx≥0,fx在区间(a,b)上的定积分为0,证明fx恒等于0
数学
设函数f(x)在闭区间[a,b]上连续,且f(x)>0,则方程∫xaf(t)dt+∫xb1f(t)dt=0在开区间(a,b)内的根有()A.0B.1C.2D.无穷多个
数学
<
1
2
3
4
5
6
7
8
>
热门搜索: