早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 63 与F2是双曲线x2a2-y2b2=1 相关的结果,耗时33 ms
双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为( ) A. 6B. 3C. 2D. 33
数学
双曲线C:x2a2-y2b2=1(a>0,b>0)的焦点为F1,F2,若C上存在点P,使得|PF1|=k|PF2|(k>1),则双曲线C的离心率e的取值范围是()A.(k,k+1k-1]B.(1,k+1k-1]C.(1,k]D.[k,+∞)
数学
已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),A,B是圆(x+c)2+y2=4c2与C位于x轴上方的两个交点,且F1A∥F2B,则双曲线C的离心率为()A.2+73B.4+73C.3+1
数学
5+174
已知F1,F2分别是双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,G是双曲线C上一点,且满足|GF1|-7|GF2|=0,则C经过第一象限的渐近线的斜率的取值范围是()A.(0,73]B.(0,52]C.(2
数学
设双曲线C:x2a2-y2b2=1(a>0,b>0)左,右焦点为F1,F2,P是双曲线C上的一点,PF1与x轴垂直,△PF1F2的内切圆方程为(x+1)2+(y-1)2=1,则双曲线方程为()A.x22-y23=1B.x2-y22=1C.x22-y2=1D.
数学
. x2-y23=1
(2014•南宁三模)设F1,F2是双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右两个焦点,若双曲线C上存在点P满足|PF1|:|PF2|=2:1且∠F1PF2=90°,则双曲线C的渐近线方程是()A.x±2y=0B.2x±y=0C.
其他
x±5y=0
已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120
数学
23B. 7C. 3D.
已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,在双曲线C上存在点P,满足△PF1F2的周长等于双曲线C的实轴长的3倍,则双曲线C的离心率的取值范围是()A.(1,32)B.
数学
)
已知F1,F2分别是双曲线x2a2-y2b2=1(a>b>0)的两个焦点,A和B是以O(O为坐标原点)为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为()
数学
设O为坐标原点,F1,
F2是双曲线x2a2-y2b2=1
(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1PF2=60°,|OP|=7a,则该双曲线的渐近线方程为()A.x±3y=0B.3x±y=0C.x±2y=0D.2x±y=0
数学
<
1
2
3
4
5
6
7
>
热门搜索: